接下来,我们介绍 Schema、Identity 和 Context。在上一章,我们将以节点和边组成的数据集合称之为“Data graph”,而真正意义上的知识图谱(knowledge graph)是经过了 Schema(数据模式)、Identity(数据一致性)、Context(上下文)、ontology(本体)和 rules(规则)等表示方法增强过的 data graph。本章我们讨论 Schema、Identity 和 Context。Ontology 和 rules 在后面章节讨论。

目前,知识图谱在学术界和工业界都引起了重视。本人目前也开始负责知识图谱项目,因此从本文开始对知识图谱进行系统性的介绍。首先从综述入手可以使我们对知识图谱有一个整体的概念,然后对其中的每个细节进行深入介绍。本文来自论文《Knowledge Graphs》,是一篇长达 132 页(558篇引用)的综述,可谓干货满满,所以以这篇综述作为切入点。因为内容过长,所以我们将论文的每一章作为一篇博文,一共大概会有十几篇博文。

就像做菜有好吃和不好吃一样,算法也有好的算法和不好的算法。那么我们怎么评价一个算法的好坏呢?

1. 时间复杂度

时间复杂度是用来估算算法需要执行的时间的。但是我们并不是直接用时间来估计,而是用一个函数

时间复杂度不是算法需要执行多久,而是算法需要执行多少步。