Rogerspy's Home

Transformer代码实现-Tensoflow版

  |  

前面介绍了Transformer的pytorch版的代码实现,下面我们再介绍一下tensorflow版的代码实现。

本文主要参考的是tensorflow官方教程,使用的是tensoflow 2.0,因此首先还是要先搭建代码环境,可以参考这里:简单粗暴 TensorFlow 2.0

1. 前期准备

1
2
3
4
5
6
7
8
9
10
11
from __future__ import absolute_import, division, print_function, unicode_literals
try:
%tensorflow_version 2.x
except Exception:
pass
import tensorflow_datasets as tfds
import tensorflow as tf

import time
import numpy as np
import matplotlib.pyplot as plt

2. Scaled Dot-Product Attention

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
def scaled_dot_product_attention(q, k, v, mask):
"""
Calculate the attention weights.
q, k, v must have matching leading dimension.
k, v must have matching penultimate dimension, i.e.:seq_len_k = seq_len_v.
The mask has different shapes depending on its type (padding or look ahead)
but it must be broadcastable for addition.

:params q: query shape == (..., seq_len_q, depth)
:params k: key shape == (..., seq_len_k, depth)
:params v: value shape == (..., seq_len_v, depth)
:params mask: Float tensor with shape bradcastable to
(None, seq_len_q, seq_len_k), Default is None.
"""
# MatMul step in above Fig
matmul_qk = tf.matmul(q, k, transpose_b=True) # (..., seq_len_q, seq_len_k)

# Scale step in above Fig
# This is done because for large values of depth, the dot product grows
# large in magnitude pushing the softmax function where it has small
# gradients resulting in a very hard softmax.
dk = tf.cast(tf.shape(k)[-1], tf.float32)
scaled_attention = matmul_qk / tf.math.sqrt(dk)

# Mask step in above Fig
# This is done because the mask is summed with the scaled matrix
# multiplication of Q and K and is applied immediately before a softmax.
# The goal is to zero out these cells, and large negative inputs to
# softmax are near zero in the output.
if mask is not None:
scaled_attention += (mask * -1e9)

# SoftMax step in above Fig
# softmax is normalized on the last axis (seq_len_k) so that the scores add up to 1
attention_weights = tf.nn.softmax(scaled_attention, axis=-1)

# The last MatMul step in above Fig
out = tf.matmul(attention_weights, v) # (..., seq_len_q, depth_v)

return out, attention_weights

3. Multi-Head Attention

Multi-Head Attention有四部分组成:

  • 线性转换层和multi-head (Q, K, V)
  • Multi-head Scaled dot-product attention
  • Concatenation of heads
  • 最后的线性转换层
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
class MultiHeadAttention(tf.keras.layers.Layer):
"""
Implement Multi=head attention layer.
"""
def __init__(self, d_mode, num_heads):
super(MultiHeadAttention, self).__init__()
self.d_model= d_model
self.num_heads = num_heads

# after `Concat`, concatenated heads dimension must equal to d_model
assert d_model % num_heads == 0

self.depth = d_model // num_heads

self.wq = tf.keras.layers.Dense(d_model)
self.wk = tf.keras.layers.Dense(d_model)
self.wv = tf.keras.layers.Dense(d_model)

self.dense = tf.keras.layers.Dense(d_model)

def split_heads(self, x, batch_size):
"""
Split the last dimension (word vector dimension) into (num_heads, depth).
Transpose the result such that the shape is
(batch_size, num_heads, seq_len, depth)
"""
x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth))
return tf.transpose(x, perm=[0, 2, 1, 3])

def call(self, q, k, v, mask):
batch_size = tf.shape(q)[0]

# First linear transition step in above Fig
q = self.wq(q) # (batch_size, seq_len, d_model)
k = self.wk(k) # (batch_size, seq_len, d_model)
v = self.wv(v) # (batch_size, seq_len, d_model

# Split K, Q, V into multi-heads
q = self.split_heads(q, batch_size) # (batch_size, num_heads, seq_len_q, depth)
k = self.split_heads(k, batch_size) # (batch_size, num_heads, seq_len_k, depth)
v = self.split_heads(v, batch_size) # (batch_size, num_heads, seq_len_v, depth)

# Scaled Dot-Product Attention step in above Fig
scaled_attention, attention_weights = scaled_dot_product_attention(q, k, v, mask)
# scaled_attention.shape == (batch_size, num_heads, seq_len_q, depth)
# attention_weights.shape == (batch_size, num_heads, seq_len_q, seq_len_k)

# Concat step in above Fig
scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3])
# scale_attention.shape == (batch_size, seq_len_q, num_heads, depth)
concat_attention = tf.reshape(scaled_attention, (batch_size, -1, self.d_model))
# concate_attention.shaoe == (batch_size, seq_len_q, d_model)

# Final linear transition step in above Fig
out = self.dense(concat_attention) # (batch_size, seq_len_q, d_model)

return out, attention_weights

4. Point wise feed forward network

Point wise feed forward network由两个全连接层组成,激活函数使用Relu

1
2
3
4
5
6
def point_wise_feed_forward_network(d_model, d_ff):
ffn = tf.keras.Sequential([
tf.keras.layers.Dense(d_ff, activation='relu'), # (batch_size, seq_len, d_ff)
tf.keras.layers.Dense(d_model) # (batch_size, seq_len, d_model)
])
return ffn

5. Positional encoding

1
2
3
4
5
6
7
8
9
10
def get_angles(pos, i, d_model):
"""
Get the absolute position angle from each word.

:params pos: position index
:params i: word embedding dimension index at each position
:params d_model: model dimension
"""
angle_rates = 1 / np.power(10000, (2*(i//2)) / np.float32(d_model))
return pos * angle_rates
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
def positional_encoding(position, d_model):
"""
Compute positional encoding.

:params position: length of sentence
:params d_model: model dimension
"""
angle_rads = get_angles(np.arange(position)[:, np.newaxis],
np.arange(d_model)[np.newaxis, :],
d_model) # (position, d_model)

# apply sin to even indices in the array; 2i
angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2])

# apply cos to odd indices in the array; 2i+1
angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2])

# positional encoding
positional_encoding = angle_rads[np.newaxis, ...]

return tf.cast(positional_encoding, dtype=tf.float32)

6. Masking

这里有两种Mask,一种用来mask掉输入序列中的padding,一种用来mask掉解码过程中“未来词”。

  • Mask每个batch中所有序列的padding token,使得模型不会把padding token当成输入:
1
2
3
4
5
6
7
8
9
10
11
def create_padding_mask(seq):
"""
Mask all the pad tokens in the batch of sequence.
It ensures that the model does not treat padding as the input.
The mask indicates where pad value 0 is present:
it outputs a 1 at those locations, and a 0 otherwise.
"""
seq = tf.cast(tf.math.equal(seq, 0), tf.float32)

# add extra dimensions to add the padding to the attention logits.
return seq[:, tf.newaxis, tf.newaxis, :] # (batch_size, 1, 1, seq_len)
  • Mask掉解码过程中的“未来词”:
1
2
3
4
5
6
7
def create_look_ahead_mask(size):
"""
The look-ahead mask is used to mask the future tokens in a sequence.
In other words, the mask indicates which entries should not be used.
"""
mask = 1 - tf.linalg.band_part(tf.ones((size, size)), -1, 0)
return mask # (seq_len, seq_len)

7. Encoder and Decoder

Transformer和标准的seq2seq with attention模型一样,采用encoder-decoder结构,encoder / decoder都包含了6个结构相同的encoder layerdecoder layer

7.1 Encoder

Encoder layer由两个sub-layer组成:

  • Multi-head attention
  • Point wise feed forward network

每个sub-layer后面都接一个layer normalization,使用残差连接防止梯度消失。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
class EncoderLayer(tf.keras.layers.Layer):
"""
Implements Encoder Layer.
"""
def __init__(self, d_model, num_heads, d_ff, rate=0.1):
super(EncoderLayer, self).__init__()

self.multihead_attention = MultiHeadAttention(d_model, num_heads)
self.ffn = point_wise_feed_forward_network(d_model, d_ff)

self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)

self.dropout1 = tf.keras.layers.Dropout(rate)
self.fropout2 = tf.keras.layers.Dropout(rate)

def call(self, x, training, padding_mask):
# Multi-head attention sub-layer
attention_out, _ = self.multihead_attention(x, x, x, padding_mask)
# attention_out.shape == (batch_size, input_seq_len, d_model)
attention_out = self.dropout1(attention_out, training=training)
attn_norm_out = self.layernorm1(x + attention_out)
# attn_norm_out.shape == (batch_size, input_seq_len, d_model)

# point wise feed forward network sub-layer
ffn_out = self.ffn(attn_norm_out) # (batch_size, input_seq_len, d_model)
ffn_out = self.dropout2(ffn_out, training)
ffn_norm_out = self.layernorm2(attn_norm_out + ffn_out)
# ffn_norm_out.shape == (batch_size, input_seq_len, d_model)

return ffn_norm_out

Encoder由三部分组成:

  • 输入Embedding
  • Positional Encoding
  • N个encoder layer
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
class Encoder(tf.keras.layers.Layer):
def __init__(self, num_layers, d_model, num_heads,
d_ff, input_vocab_size, rate=0.1):
super(Encoder, self).__init__()
self.d_model = d_model
self.num_layers = num_layers

# Embedding layer
self.embedding = tf.keras.layers.Embedding(input_vocab_size, d_model)
# Positional encoding layer
self.pos_encoding = positional_encoding(input_vocab_size, d_model)

# encoder layers
self.encoder_layers = [EncoderLayer(d_model, num_heads, d_ff, rate)
for _ in range(num_layers)]
self.dropout = tf.keras.layers.Dropout(rate)

def call(self, x, training, padding_mask):
"""
The input is put through an embedding which is summed with the positional encoding.
The output of this summation is the input to the encoder layers.
The output of the encoder is the input to the decoder.
"""
seq_len = tf.shape(x)[1]

# adding embedding and positional encoding
x = self.embedding(x) # (batch_size, input_seq_len, d_model)
x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32)) # ????
x += self.pos_encoding[:, :seq_len, :]
x = self.dropout(x, training=training)

# encoder layer
for encoder in self.encoder_layers:
x =encoder(x, training, padding_mask)

return x # (batch_size, input_seq_len, d_model)

7.2 Decoder

Decoder layer由三个sub-layer组成:

  • Masked multi-head attention (with look ahead mask and padding mask)
  • Multi-head attention (with padding mask)。其中Q(query)来自于前一层(或者输入层)的输出, K(key)和V(value)来源于Encoder的输出。
  • Point wise feed forward networks

encoder layer类似,每个sub-layer后面会接一个layer normalization,同样使用残差连接。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
class DecoderLayer(tf.keras.layers.Layer):
def __init__(self, d_model, num_heads, d_ff, rate=0.1):
super(DecoderLayer, self).__init__()

self.multihead_attention1 = MultiHeadAttention(d_model, num_heads)
self.multihead_attention2 = MultiHeadAttention(d_model, num_heads)

self.ffn = point_wise_feed_forward_network(d_model, d_ff)

self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.layernorm3 = tf.keras.layers.LayerNormalization(epsilon=1e-6)

self.dropout1 = tf.keras.layers.Dropout(rate)
self.dropout2 = tf.keras.layers.Dropout(rate)
self.dropout3 = tf.keras.layers.Dropout(rate)

def call(self, x, encoder_out, training, look_ahead_mask, padding_mask):
# enc_output.shape == (batch_size, input_seq_len, d_model)

# Masked multi-head attention (with look ahead mask and padding mask)
attention_out1, attn_weights1 = self.multihead_attention1(x, x, x, padding_mask)
# attention_out.shape == (batch_size, target_seq_len, d_model)
attention_out1 = self.dropout1(attention_out1, training=training)
attn_norm_out1 = self.layernorm1(attention_out1 + x)
# attn_nor_out.shape == (batch_size, target_seq_len, d_model)

# Multi-head attention (with padding mask)
attention_out2, attn_weights2 = self.multihead_attention2(attention_out1,
encoder_out,
encoder_out,
padding_mask)
# attention_out2.shape == (batch_size, target_seq_len, d_model)
attention_out2 = self.dropout2(attention_out2, training=training)
attn_norm_out2 = self.layernorm2(attention_out2 + attn_norm_out1)
# attn_nor_out2.shape == # (batch_size, target_seq_len, d_model)

# Point wise feed forward networks
ffn_out = self.ffn(attn_norm_out2) # (Point wise feed forward networks)
ffn_out = self.dropout3(ffn_out, training=training)
ffn_norm_out = self.layernorm3(ffn_out + attn_norm_out2)

return ffn_norm_out, attn_weights1, attn_weights2

Decoder由三部分组成:

  • Output Embedding
  • Positional Encoding
  • N个decoder layer
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
class Decoder(tf.keras.layers.Layer):
def __init__(self, num_layers, d_model, num_heads, d_ff, target_vocab_size, rate=0.1):
super(Decoder, self).__init__()

self.d_model = d_model
self.num_layers = num_layers

self.embedding = tf.keras.layers.Embedding(target_vocab_size, d_model)
self.pos_encoding = positional_encoding(target_vocab_size, d_model)

self.decoder_layers = [DecoderLayer(d_model, num_heads, dff, rate)
for _ in range(num_layers)]
self.dropout = tf.keras.layers.Dropout(rate)

def call(self, x, encoder_out, training, look_ahead_mask, padding_mask):
seq_len = tf.shape(x)[1]
attention_weights = {}

x = self.embedding(x) # (batch_size, target_seq_len, d_model)
x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
x += self.pos_encoding[:, :seq_len, :]

x = self.dropout(x, training=training)

for i in range(self.num_layers):
x, block1, block2 = self.decoder_layers[i](x, encoder_out, training,
look_ahead_mask, padding_mask)
attention_weights['decoder_layer{}_block1'.format(i+1)] = block1
attention_weights['decoder_layer{}_block2'.format(i+1)] = block2

# x.shape == (batch_size, target_seq_len, d_model)
return x, attention_weights

8. Create the Transformer

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
class Transformer(tf.keras.Model):
def __init__(self, num_layers, d_model, num_heads, d_ff,
input_vocab_size, target_vocab_size, rate=0.1):
super(Transformer, self).__init__()

self.encoder = Encoder(num_layers, d_model, num_heads, d_ff,
input_vocab_size, rate)
self.decoder = Decoder(num_layers, d_model, num_heads, d_ff,
target_vocab_size, rate)

self.final_layer = tf.keras.layers.Dense(target_vocab_size)

def call(self, inputs, targets, training, encode_padding_mask,
look_ahead_mask, decode_padding_mask):
encoder_output = self.encoder(inputs, training, encode_padding_mask)
# encoder_output.shape = (batch_size, inp_seq_len, d_model)

decoder_output, attention_weights = self.decoder(
targets, encoder_output, training, look_ahead_mask, decode_padding_mask
)
# decoder_output.shape = (batch_size, tar_seq_len, d_model)

final_output = self.final_layer(decoder_output)
# final_output.shape = (batch_size, tar_seq_len, target_vocab_size)

return final_output, attention_weights

9. 实验

我们的实验还是将Transformer用于机器翻译——葡萄牙语翻译成英语。模型训练以后,我们输入葡萄牙语,模型返回英语。

9.1 优化器

论文中使用的优化器是Adam, 使用下式自定义学习率:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
def __init__(self, d_model, warmup_steps=4000):
super(CustomSchedule, self).__init__()

self.d_model = d_model
self.d_model = tf.cast(self.d_model, tf.float32)

self.warmup_steps = warmup_steps

def __call__(self, step):
arg1 = tf.math.rsqrt(step)
arg2 = step * (self.warup_steps ** -1.5)

return tf.math.rsqrt(self.d_model) * tf.math.minimum(arg1, arg2)
1
2
learning_rate = CustomSchedule(d_model)
optimizer = tf.keras.optimizers.Adam(learning_rate, beta_1=0.9, beta_2=0.98, epsilon=1e-9)c

示例:

1
2
3
4
5
temp_learning_rate_schedule = CustomSchedule(d_model)

plt.plot(temp_learning_rate_schedule(tf.range(40000, dtype=tf.float32)))
plt.ylabel("Learning Rate")
plt.xlabel("Train Step")

png

9.2 Loss and Metrics

由于target sentence被padding了,因此计算损失的时候使用padding mask也是至关重要的:

1
2
3
loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True, reduction="none"
)
1
2
3
4
5
6
7
8
def loss_function(real, pred):
mask = tf.math.logical_not(tf.math.equal(real, 0))
loss_ = loss_object(real, pred)

mask = tf.cast(mask, dtype=loss_.dtype)
loss_ *= mask

return tf.reduce_mean(loss_)
1
2
train_loss = tf.keras.metrics.Mean(name='train_loss')
train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')

9.3 模型超参数设置

为了保证模型较小,训练速度相对够快,实验过程中的超参数不会和论文保持一致, num_layersd_modeld_ff都会有所减小:

1
2
3
4
5
6
7
8
num_layers = 4
d_model = 128
dff = 512
num_heads = 8

input_vocab_size = tokenizer_pt.vocab_size + 2
target_vocab_size = tokenizer_en.vocab_size + 2
dropout_rate = 0.1

9.4 数据pipeline

  • 数据集

数据集使用TFDSTED Talks Open Translation Project中加载 Portugese-English translation dataset。这个数据集包含大概5万训练数据,1100验证数据和2000测试数据。

1
2
3
examples, metadata = tfds.load('ted_hrlr_translate/pt_to_en', with_info=True,
as_supervised=True)
train_examples, val_examples = examples['train'], examples['validation']
  • Tokenizer
1
2
3
4
5
tokenizer_en = tfds.features.text.SubwordTextEncoder.build_from_corpus(
(en.numpy() for pt, en in train_examples), target_vocab_size=2**13)

tokenizer_pt = tfds.features.text.SubwordTextEncoder.build_from_corpus(
(pt.numpy() for pt, en in train_examples), target_vocab_size=2**13)

示例:

1
2
3
4
5
6
7
8
9
sample_string = 'Transformer is awesome.'

tokenized_string = tokenizer_en.encode(sample_string)
print ('Tokenized string is {}'.format(tokenized_string))

original_string = tokenizer_en.decode(tokenized_string)
print ('The original string: {}'.format(original_string))

assert original_string == sample_string

Tokenized string is [7915, 1248, 7946, 7194, 13, 2799, 7877]
The original string: Transformer is awesome.

Tokenizer会将不在词表中的词拆分成子字符串:

1
2
for ts in tokenized_string:
print('{}--->{}'.format(ts, tokenizer_en.decode([ts])))

7915 ——> T
1248 ——> ran
7946 ——> s
7194 ——> former
13 ——> is
2799 ——> awesome
7877 ——> .

1
2
BUFFER_SIZE = 20000
BATCH_SIZE = 64
  • 向输入和输出中添加开始和结束符
1
2
3
4
5
6
7
8
def encode(lang1, lang2):
lang1 = [tokenizer_pt.vocab_size] + tokenizer_pt.encode(
lang1.numpy()) + [tokenizer_pt.vocab_size+1]

lang2 = [tokenizer_en.vocab_size] + tokenizer_en.encode(
lang2.numpy()) + [tokenizer_en.vocab_size+1]

return lang1, lang2
1
2
def tf_encode(pt, en):
return tf.py_function(encode, [pt, en], [tf.float64, tf.float64])
  • 为了使模型不至于太大,且实验相对较快,我们过滤掉太长的句子
1
2
3
MAX_LEN = 40
def filter_max_len(x, y, max_len=MAX_LEN):
return tf.logical_and(tf.size(x) <= max_len, tf.size(y) <= max_len)
1
2
3
4
5
6
7
8
9
10
11
12
train_dataset = train_examples.map(tf_encode)
train_dataset = train_dataset.filter(filter_max_length)
# cache the dataset to memory to get a speedup while reading from it.
train_dataset = train_dataset.cache()
train_dataset = train_dataset.shuffle(BUFFER_SIZE).padded_batch(
BATCH_SIZE, padded_shapes=([-1], [-1]))
train_dataset = train_dataset.prefetch(tf.data.experimental.AUTOTUNE)


val_dataset = val_examples.map(tf_encode)
val_dataset = val_dataset.filter(filter_max_length).padded_batch(
BATCH_SIZE, padded_shapes=([-1], [-1]))
1
2
pt_batch, en_batch = next(iter(val_dataset))
pt_batch, en_batch

(,
)

9.5 Training and checkpointing

1
2
transformer = Transformer(num_layers, d_model, num_heads, dff,
input_vocab_size, target_vocab_size, dropout_rate)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
def create_masks(inp, tar):
# Encoder padding mask
encode_padding_mask = create_padding_mask(inp)

# Used in the 2nd attention block in the decoder.
# This padding mask is used to mask the encoder outputs.
decode_padding_mask = create_padding_mask(inp)

# Used in the 1st attention block in the decoder.
# It is used to pad and mask future tokens in the input received by
# the decoder.
look_ahead_mask = create_look_ahead_mask(tf.shape(tar)[1])
decode_target_padding_mask = create_padding_mask(tar)
combined_mask = tf.maximum(decode_target_padding_mask, look_ahead_mask)

return encode_padding_mask, combined_mask, decode_padding_mask

管理checkpoint,每N轮保存一次

1
2
3
4
5
6
7
8
9
10
11
checkpoint_path = "./checkpoints/train"

ckpt = tf.train.Checkpoint(transformer=transformer,
optimizer=optimizer)

ckpt_manager = tf.train.CheckpointManager(ckpt, checkpoint_path, max_to_keep=5)

# if a checkpoint exists, restore the latest checkpoint.
if ckpt_manager.latest_checkpoint:
ckpt.restore(ckpt_manager.latest_checkpoint)
print ('Latest checkpoint restored!!')

target被分成两份:tar_inptar_real。其中tar_inp用于传入给decodertar_real是和输入一样的,只是向右移动一个位置,例如:

sentence = "SOS A lion in the jungle is sleeping EOS"

tar_inp = "SOS A lion in the jungle is sleeping"

tar_real = "A lion in the jungle is sleeping EOS"

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# The @tf.function trace-compiles train_step into a TF graph for faster
# execution. The function specializes to the precise shape of the argument
# tensors. To avoid re-tracing due to the variable sequence lengths or variable
# batch sizes (the last batch is smaller), use input_signature to specify
# more generic shapes.

train_step_signature = [
tf.TensorSpec(shape=(None, None), dtype=tf.int64),
tf.TensorSpec(shape=(None, None), dtype=tf.int64),
]

@tf.function(input_signature=train_step_signature)
def train_step(inp, tar):
tar_inp = tar[:, :-1]
tar_real = tar[:, 1:]

enc_padding_mask, combined_mask, dec_padding_mask = create_masks(inp, tar_inp)

with tf.GradientTape() as tape:
predictions, _ = transformer(inp, tar_inp,
True,
enc_padding_mask,
combined_mask,
dec_padding_mask)
loss = loss_function(tar_real, predictions)

gradients = tape.gradient(loss, transformer.trainable_variables)
optimizer.apply_gradients(zip(gradients, transformer.trainable_variables))

train_loss(loss)
train_accuracy(tar_real, predictions)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
EPOCHS = 20

for epoch in range(EPOCHS):
start = time.time()

train_loss.reset_states()
train_accuracy.reset_states()

# inp -> portuguese, tar -> english
for (batch, (inp, tar)) in enumerate(train_dataset):
train_step(inp, tar)

if batch % 50 == 0:
print ('Epoch {} Batch {} Loss {:.4f} Accuracy {:.4f}'.format(
epoch + 1, batch, train_loss.result(), train_accuracy.result()))

if (epoch + 1) % 5 == 0:
ckpt_save_path = ckpt_manager.save()
print ('Saving checkpoint for epoch {} at {}'.format(epoch+1,
ckpt_save_path))

print ('Epoch {} Loss {:.4f} Accuracy {:.4f}'.format(epoch + 1,
train_loss.result(),
train_accuracy.result()))

print ('Time taken for 1 epoch: {} secs\n'.format(time.time() - start))

W0814 01:06:36.753235 140098807473920 deprecation.py:323] From /tmpfs/src/tf_docs_env/lib/python3.5/site-packages/tensorflow_core/python/keras/optimizer_v2/optimizer_v2.py:455: BaseResourceVariable.constraint (from tensorflow.python.ops.resource_variable_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Apply a constraint manually following the optimizer update step.

Epoch 1 Batch 0 Loss 4.7365 Accuracy 0.0000
Epoch 1 Batch 50 Loss 4.3028 Accuracy 0.0033
Epoch 1 Batch 100 Loss 4.1992 Accuracy 0.0140
Epoch 1 Batch 150 Loss 4.1569 Accuracy 0.0182
Epoch 1 Batch 200 Loss 4.0963 Accuracy 0.0204
Epoch 1 Batch 250 Loss 4.0199 Accuracy 0.0217
Epoch 1 Batch 300 Loss 3.9262 Accuracy 0.0242
Epoch 1 Batch 350 Loss 3.8337 Accuracy 0.0278
Epoch 1 Batch 400 Loss 3.7477 Accuracy 0.0305
Epoch 1 Batch 450 Loss 3.6682 Accuracy 0.0332
Epoch 1 Batch 500 Loss 3.6032 Accuracy 0.0367
Epoch 1 Batch 550 Loss 3.5408 Accuracy 0.0405
Epoch 1 Batch 600 Loss 3.4777 Accuracy 0.0443
Epoch 1 Batch 650 Loss 3.4197 Accuracy 0.0479
Epoch 1 Batch 700 Loss 3.3672 Accuracy 0.0514
Epoch 1 Loss 3.3650 Accuracy 0.0515
Time taken for 1 epoch: 576.2345867156982 secs

Epoch 2 Batch 0 Loss 2.4194 Accuracy 0.1030
Epoch 2 Batch 50 Loss 2.5576 Accuracy 0.1030
Epoch 2 Batch 100 Loss 2.5341 Accuracy 0.1051
Epoch 2 Batch 150 Loss 2.5218 Accuracy 0.1076
Epoch 2 Batch 200 Loss 2.4960 Accuracy 0.1095
Epoch 2 Batch 250 Loss 2.4707 Accuracy 0.1115
Epoch 2 Batch 300 Loss 2.4528 Accuracy 0.1133
Epoch 2 Batch 350 Loss 2.4393 Accuracy 0.1150
Epoch 2 Batch 400 Loss 2.4268 Accuracy 0.1165
Epoch 2 Batch 450 Loss 2.4125 Accuracy 0.1182
Epoch 2 Batch 500 Loss 2.4002 Accuracy 0.1196
Epoch 2 Batch 550 Loss 2.3885 Accuracy 0.1209
Epoch 2 Batch 600 Loss 2.3758 Accuracy 0.1222
Epoch 2 Batch 650 Loss 2.3651 Accuracy 0.1235
Epoch 2 Batch 700 Loss 2.3557 Accuracy 0.1247
Epoch 2 Loss 2.3552 Accuracy 0.1247
Time taken for 1 epoch: 341.75365233421326 secs

Epoch 3 Batch 0 Loss 1.8798 Accuracy 0.1347
Epoch 3 Batch 50 Loss 2.1781 Accuracy 0.1438
Epoch 3 Batch 100 Loss 2.1810 Accuracy 0.1444
Epoch 3 Batch 150 Loss 2.1796 Accuracy 0.1452
Epoch 3 Batch 200 Loss 2.1759 Accuracy 0.1462
Epoch 3 Batch 250 Loss 2.1710 Accuracy 0.1471
Epoch 3 Batch 300 Loss 2.1625 Accuracy 0.1473
Epoch 3 Batch 350 Loss 2.1520 Accuracy 0.1476
Epoch 3 Batch 400 Loss 2.1411 Accuracy 0.1481
Epoch 3 Batch 450 Loss 2.1306 Accuracy 0.1484
Epoch 3 Batch 500 Loss 2.1276 Accuracy 0.1490
Epoch 3 Batch 550 Loss 2.1231 Accuracy 0.1497
Epoch 3 Batch 600 Loss 2.1143 Accuracy 0.1500
Epoch 3 Batch 650 Loss 2.1063 Accuracy 0.1508
Epoch 3 Batch 700 Loss 2.1034 Accuracy 0.1519
Epoch 3 Loss 2.1036 Accuracy 0.1519
Time taken for 1 epoch: 328.1187334060669 secs

Epoch 4 Batch 0 Loss 2.0632 Accuracy 0.1622
Epoch 4 Batch 50 Loss 1.9662 Accuracy 0.1642
Epoch 4 Batch 100 Loss 1.9674 Accuracy 0.1656
Epoch 4 Batch 150 Loss 1.9682 Accuracy 0.1667
Epoch 4 Batch 200 Loss 1.9538 Accuracy 0.1679
Epoch 4 Batch 250 Loss 1.9385 Accuracy 0.1683
Epoch 4 Batch 300 Loss 1.9296 Accuracy 0.1694
Epoch 4 Batch 350 Loss 1.9248 Accuracy 0.1705
Epoch 4 Batch 400 Loss 1.9178 Accuracy 0.1716
Epoch 4 Batch 450 Loss 1.9068 Accuracy 0.1724
Epoch 4 Batch 500 Loss 1.8983 Accuracy 0.1735
Epoch 4 Batch 550 Loss 1.8905 Accuracy 0.1745
Epoch 4 Batch 600 Loss 1.8851 Accuracy 0.1757
Epoch 4 Batch 650 Loss 1.8793 Accuracy 0.1768
Epoch 4 Batch 700 Loss 1.8742 Accuracy 0.1779
Epoch 4 Loss 1.8746 Accuracy 0.1780
Time taken for 1 epoch: 326.3032810688019 secs

Epoch 5 Batch 0 Loss 1.9596 Accuracy 0.1979
Epoch 5 Batch 50 Loss 1.7048 Accuracy 0.1961
Epoch 5 Batch 100 Loss 1.6949 Accuracy 0.1969
Epoch 5 Batch 150 Loss 1.6942 Accuracy 0.1986
Epoch 5 Batch 200 Loss 1.6876 Accuracy 0.1992
Epoch 5 Batch 250 Loss 1.6827 Accuracy 0.1994
Epoch 5 Batch 300 Loss 1.6776 Accuracy 0.2006
Epoch 5 Batch 350 Loss 1.6740 Accuracy 0.2013
Epoch 5 Batch 400 Loss 1.6706 Accuracy 0.2019
Epoch 5 Batch 450 Loss 1.6656 Accuracy 0.2028
Epoch 5 Batch 500 Loss 1.6599 Accuracy 0.2035
Epoch 5 Batch 550 Loss 1.6558 Accuracy 0.2040
Epoch 5 Batch 600 Loss 1.6519 Accuracy 0.2047
Epoch 5 Batch 650 Loss 1.6510 Accuracy 0.2053
Epoch 5 Batch 700 Loss 1.6453 Accuracy 0.2058
Saving checkpoint for epoch 5 at ./checkpoints/train/ckpt-1
Epoch 5 Loss 1.6453 Accuracy 0.2058
Time taken for 1 epoch: 307.13636589050293 secs

Epoch 6 Batch 0 Loss 1.5280 Accuracy 0.2127
Epoch 6 Batch 50 Loss 1.5062 Accuracy 0.2214
Epoch 6 Batch 100 Loss 1.5121 Accuracy 0.2225
Epoch 6 Batch 150 Loss 1.5051 Accuracy 0.2216
Epoch 6 Batch 200 Loss 1.5014 Accuracy 0.2219
Epoch 6 Batch 250 Loss 1.4984 Accuracy 0.2222
Epoch 6 Batch 300 Loss 1.4966 Accuracy 0.2232
Epoch 6 Batch 350 Loss 1.4929 Accuracy 0.2231
Epoch 6 Batch 400 Loss 1.4900 Accuracy 0.2234
Epoch 6 Batch 450 Loss 1.4836 Accuracy 0.2237
Epoch 6 Batch 500 Loss 1.4792 Accuracy 0.2241
Epoch 6 Batch 550 Loss 1.4727 Accuracy 0.2245
Epoch 6 Batch 600 Loss 1.4695 Accuracy 0.2251
Epoch 6 Batch 650 Loss 1.4659 Accuracy 0.2256
Epoch 6 Batch 700 Loss 1.4625 Accuracy 0.2262
Epoch 6 Loss 1.4619 Accuracy 0.2262
Time taken for 1 epoch: 303.32839941978455 secs

Epoch 7 Batch 0 Loss 1.1667 Accuracy 0.2262
Epoch 7 Batch 50 Loss 1.3010 Accuracy 0.2407
Epoch 7 Batch 100 Loss 1.3009 Accuracy 0.2400
Epoch 7 Batch 150 Loss 1.2983 Accuracy 0.2414
Epoch 7 Batch 200 Loss 1.2959 Accuracy 0.2428
Epoch 7 Batch 250 Loss 1.2948 Accuracy 0.2436
Epoch 7 Batch 300 Loss 1.2928 Accuracy 0.2439
Epoch 7 Batch 350 Loss 1.2901 Accuracy 0.2442
Epoch 7 Batch 400 Loss 1.2831 Accuracy 0.2448
Epoch 7 Batch 450 Loss 1.2844 Accuracy 0.2458
Epoch 7 Batch 500 Loss 1.2832 Accuracy 0.2463
Epoch 7 Batch 550 Loss 1.2827 Accuracy 0.2469
Epoch 7 Batch 600 Loss 1.2786 Accuracy 0.2470
Epoch 7 Batch 650 Loss 1.2738 Accuracy 0.2473
Epoch 7 Batch 700 Loss 1.2737 Accuracy 0.2480
Epoch 7 Loss 1.2737 Accuracy 0.2480
Time taken for 1 epoch: 314.8111472129822 secs

Epoch 8 Batch 0 Loss 1.1562 Accuracy 0.2611
Epoch 8 Batch 50 Loss 1.1305 Accuracy 0.2637
Epoch 8 Batch 100 Loss 1.1262 Accuracy 0.2644
Epoch 8 Batch 150 Loss 1.1193 Accuracy 0.2639
Epoch 8 Batch 200 Loss 1.1210 Accuracy 0.2645
Epoch 8 Batch 250 Loss 1.1177 Accuracy 0.2651
Epoch 8 Batch 300 Loss 1.1182 Accuracy 0.2648
Epoch 8 Batch 350 Loss 1.1200 Accuracy 0.2653
Epoch 8 Batch 400 Loss 1.1212 Accuracy 0.2655
Epoch 8 Batch 450 Loss 1.1207 Accuracy 0.2653
Epoch 8 Batch 500 Loss 1.1222 Accuracy 0.2660
Epoch 8 Batch 550 Loss 1.1219 Accuracy 0.2664
Epoch 8 Batch 600 Loss 1.1229 Accuracy 0.2663
Epoch 8 Batch 650 Loss 1.1211 Accuracy 0.2664
Epoch 8 Batch 700 Loss 1.1206 Accuracy 0.2668
Epoch 8 Loss 1.1207 Accuracy 0.2668
Time taken for 1 epoch: 301.5652780532837 secs

Epoch 9 Batch 0 Loss 0.8384 Accuracy 0.2751
Epoch 9 Batch 50 Loss 0.9923 Accuracy 0.2793
Epoch 9 Batch 100 Loss 0.9958 Accuracy 0.2796
Epoch 9 Batch 150 Loss 0.9953 Accuracy 0.2787
Epoch 9 Batch 200 Loss 0.9937 Accuracy 0.2790
Epoch 9 Batch 250 Loss 0.9988 Accuracy 0.2800
Epoch 9 Batch 300 Loss 0.9999 Accuracy 0.2801
Epoch 9 Batch 350 Loss 1.0021 Accuracy 0.2800
Epoch 9 Batch 400 Loss 1.0001 Accuracy 0.2800
Epoch 9 Batch 450 Loss 1.0013 Accuracy 0.2800
Epoch 9 Batch 500 Loss 1.0027 Accuracy 0.2805
Epoch 9 Batch 550 Loss 1.0034 Accuracy 0.2804
Epoch 9 Batch 600 Loss 1.0071 Accuracy 0.2810
Epoch 9 Batch 650 Loss 1.0076 Accuracy 0.2810
Epoch 9 Batch 700 Loss 1.0075 Accuracy 0.2806
Epoch 9 Loss 1.0076 Accuracy 0.2806
Time taken for 1 epoch: 304.53144931793213 secs

Epoch 10 Batch 0 Loss 0.9130 Accuracy 0.3057
Epoch 10 Batch 50 Loss 0.8950 Accuracy 0.2966
Epoch 10 Batch 100 Loss 0.9066 Accuracy 0.2967
Epoch 10 Batch 150 Loss 0.9128 Accuracy 0.2958
Epoch 10 Batch 200 Loss 0.9099 Accuracy 0.2943
Epoch 10 Batch 250 Loss 0.9131 Accuracy 0.2935
Epoch 10 Batch 300 Loss 0.9155 Accuracy 0.2930
Epoch 10 Batch 350 Loss 0.9144 Accuracy 0.2922
Epoch 10 Batch 400 Loss 0.9148 Accuracy 0.2922
Epoch 10 Batch 450 Loss 0.9170 Accuracy 0.2916
Epoch 10 Batch 500 Loss 0.9164 Accuracy 0.2910
Epoch 10 Batch 550 Loss 0.9175 Accuracy 0.2908
Epoch 10 Batch 600 Loss 0.9193 Accuracy 0.2908
Epoch 10 Batch 650 Loss 0.9229 Accuracy 0.2907
Epoch 10 Batch 700 Loss 0.9245 Accuracy 0.2910
Saving checkpoint for epoch 10 at ./checkpoints/train/ckpt-2
Epoch 10 Loss 0.9247 Accuracy 0.2910
Time taken for 1 epoch: 308.50231170654297 secs

Epoch 11 Batch 0 Loss 0.8796 Accuracy 0.3030
Epoch 11 Batch 50 Loss 0.8186 Accuracy 0.3025
Epoch 11 Batch 100 Loss 0.8268 Accuracy 0.3020
Epoch 11 Batch 150 Loss 0.8422 Accuracy 0.3026
Epoch 11 Batch 200 Loss 0.8453 Accuracy 0.3023
Epoch 11 Batch 250 Loss 0.8472 Accuracy 0.3020
Epoch 11 Batch 300 Loss 0.8478 Accuracy 0.3019
Epoch 11 Batch 350 Loss 0.8488 Accuracy 0.3018
Epoch 11 Batch 400 Loss 0.8509 Accuracy 0.3017
Epoch 11 Batch 450 Loss 0.8505 Accuracy 0.3012
Epoch 11 Batch 500 Loss 0.8505 Accuracy 0.3009
Epoch 11 Batch 550 Loss 0.8514 Accuracy 0.3005
Epoch 11 Batch 600 Loss 0.8541 Accuracy 0.3001
Epoch 11 Batch 650 Loss 0.8568 Accuracy 0.2998
Epoch 11 Batch 700 Loss 0.8581 Accuracy 0.2995
Epoch 11 Loss 0.8586 Accuracy 0.2996
Time taken for 1 epoch: 326.4959843158722 secs

Epoch 12 Batch 0 Loss 0.8353 Accuracy 0.3318
Epoch 12 Batch 50 Loss 0.7892 Accuracy 0.3161
Epoch 12 Batch 100 Loss 0.7778 Accuracy 0.3134
Epoch 12 Batch 150 Loss 0.7817 Accuracy 0.3132
Epoch 12 Batch 200 Loss 0.7845 Accuracy 0.3132
Epoch 12 Batch 250 Loss 0.7881 Accuracy 0.3124
Epoch 12 Batch 300 Loss 0.7903 Accuracy 0.3122
Epoch 12 Batch 350 Loss 0.7894 Accuracy 0.3107
Epoch 12 Batch 400 Loss 0.7889 Accuracy 0.3097
Epoch 12 Batch 450 Loss 0.7917 Accuracy 0.3089
Epoch 12 Batch 500 Loss 0.7947 Accuracy 0.3089
Epoch 12 Batch 550 Loss 0.7965 Accuracy 0.3087
Epoch 12 Batch 600 Loss 0.7990 Accuracy 0.3082
Epoch 12 Batch 650 Loss 0.8002 Accuracy 0.3077
Epoch 12 Batch 700 Loss 0.8026 Accuracy 0.3076
Epoch 12 Loss 0.8028 Accuracy 0.3076
Time taken for 1 epoch: 306.4404299259186 secs

Epoch 13 Batch 0 Loss 0.7718 Accuracy 0.3059
Epoch 13 Batch 50 Loss 0.7275 Accuracy 0.3206
Epoch 13 Batch 100 Loss 0.7308 Accuracy 0.3206
Epoch 13 Batch 150 Loss 0.7317 Accuracy 0.3186
Epoch 13 Batch 200 Loss 0.7342 Accuracy 0.3174
Epoch 13 Batch 250 Loss 0.7349 Accuracy 0.3171
Epoch 13 Batch 300 Loss 0.7374 Accuracy 0.3167
Epoch 13 Batch 350 Loss 0.7397 Accuracy 0.3166
Epoch 13 Batch 400 Loss 0.7410 Accuracy 0.3163
Epoch 13 Batch 450 Loss 0.7415 Accuracy 0.3154
Epoch 13 Batch 500 Loss 0.7434 Accuracy 0.3150
Epoch 13 Batch 550 Loss 0.7466 Accuracy 0.3148
Epoch 13 Batch 600 Loss 0.7490 Accuracy 0.3142
Epoch 13 Batch 650 Loss 0.7522 Accuracy 0.3142
Epoch 13 Batch 700 Loss 0.7552 Accuracy 0.3142
Epoch 13 Loss 0.7554 Accuracy 0.3142
Time taken for 1 epoch: 299.16382122039795 secs

Epoch 14 Batch 0 Loss 0.6654 Accuracy 0.3193
Epoch 14 Batch 50 Loss 0.6744 Accuracy 0.3277
Epoch 14 Batch 100 Loss 0.6809 Accuracy 0.3237
Epoch 14 Batch 150 Loss 0.6830 Accuracy 0.3238
Epoch 14 Batch 200 Loss 0.6875 Accuracy 0.3235
Epoch 14 Batch 250 Loss 0.6942 Accuracy 0.3238
Epoch 14 Batch 300 Loss 0.6976 Accuracy 0.3231
Epoch 14 Batch 350 Loss 0.7000 Accuracy 0.3230
Epoch 14 Batch 400 Loss 0.7019 Accuracy 0.3222
Epoch 14 Batch 450 Loss 0.7035 Accuracy 0.3212
Epoch 14 Batch 500 Loss 0.7077 Accuracy 0.3207
Epoch 14 Batch 550 Loss 0.7078 Accuracy 0.3201
Epoch 14 Batch 600 Loss 0.7095 Accuracy 0.3196
Epoch 14 Batch 650 Loss 0.7127 Accuracy 0.3197
Epoch 14 Batch 700 Loss 0.7148 Accuracy 0.3193
Epoch 14 Loss 0.7153 Accuracy 0.3194
Time taken for 1 epoch: 294.01167726516724 secs

Epoch 15 Batch 0 Loss 0.6159 Accuracy 0.3546
Epoch 15 Batch 50 Loss 0.6416 Accuracy 0.3339
Epoch 15 Batch 100 Loss 0.6477 Accuracy 0.3323
Epoch 15 Batch 150 Loss 0.6480 Accuracy 0.3300
Epoch 15 Batch 200 Loss 0.6518 Accuracy 0.3286
Epoch 15 Batch 250 Loss 0.6536 Accuracy 0.3283
Epoch 15 Batch 300 Loss 0.6576 Accuracy 0.3276
Epoch 15 Batch 350 Loss 0.6618 Accuracy 0.3274
Epoch 15 Batch 400 Loss 0.6657 Accuracy 0.3272
Epoch 15 Batch 450 Loss 0.6689 Accuracy 0.3269
Epoch 15 Batch 500 Loss 0.6693 Accuracy 0.3263
Epoch 15 Batch 550 Loss 0.6711 Accuracy 0.3255
Epoch 15 Batch 600 Loss 0.6740 Accuracy 0.3249
Epoch 15 Batch 650 Loss 0.6775 Accuracy 0.3250
Epoch 15 Batch 700 Loss 0.6796 Accuracy 0.3247
Saving checkpoint for epoch 15 at ./checkpoints/train/ckpt-3
Epoch 15 Loss 0.6800 Accuracy 0.3247
Time taken for 1 epoch: 296.7416775226593 secs

Epoch 16 Batch 0 Loss 0.6764 Accuracy 0.3298
Epoch 16 Batch 50 Loss 0.6024 Accuracy 0.3335
Epoch 16 Batch 100 Loss 0.6089 Accuracy 0.3345
Epoch 16 Batch 150 Loss 0.6135 Accuracy 0.3315
Epoch 16 Batch 200 Loss 0.6191 Accuracy 0.3323
Epoch 16 Batch 250 Loss 0.6214 Accuracy 0.3324
Epoch 16 Batch 300 Loss 0.6230 Accuracy 0.3315
Epoch 16 Batch 350 Loss 0.6268 Accuracy 0.3313
Epoch 16 Batch 400 Loss 0.6294 Accuracy 0.3309
Epoch 16 Batch 450 Loss 0.6325 Accuracy 0.3306
Epoch 16 Batch 500 Loss 0.6350 Accuracy 0.3300
Epoch 16 Batch 550 Loss 0.6385 Accuracy 0.3298
Epoch 16 Batch 600 Loss 0.6405 Accuracy 0.3293
Epoch 16 Batch 650 Loss 0.6434 Accuracy 0.3291
Epoch 16 Batch 700 Loss 0.6472 Accuracy 0.3289
Epoch 16 Loss 0.6476 Accuracy 0.3290
Time taken for 1 epoch: 302.5653040409088 secs

Epoch 17 Batch 0 Loss 0.7453 Accuracy 0.3696
Epoch 17 Batch 50 Loss 0.5800 Accuracy 0.3427
Epoch 17 Batch 100 Loss 0.5841 Accuracy 0.3422
Epoch 17 Batch 150 Loss 0.5912 Accuracy 0.3409
Epoch 17 Batch 200 Loss 0.5911 Accuracy 0.3384
Epoch 17 Batch 250 Loss 0.5962 Accuracy 0.3389
Epoch 17 Batch 300 Loss 0.5997 Accuracy 0.3389
Epoch 17 Batch 350 Loss 0.6017 Accuracy 0.3383
Epoch 17 Batch 400 Loss 0.6042 Accuracy 0.3376
Epoch 17 Batch 450 Loss 0.6077 Accuracy 0.3375
Epoch 17 Batch 500 Loss 0.6106 Accuracy 0.3369
Epoch 17 Batch 550 Loss 0.6127 Accuracy 0.3361
Epoch 17 Batch 600 Loss 0.6148 Accuracy 0.3352
Epoch 17 Batch 650 Loss 0.6171 Accuracy 0.3346
Epoch 17 Batch 700 Loss 0.6195 Accuracy 0.3339
Epoch 17 Loss 0.6196 Accuracy 0.3339
Time taken for 1 epoch: 303.3943374156952 secs

Epoch 18 Batch 0 Loss 0.4733 Accuracy 0.3313
Epoch 18 Batch 50 Loss 0.5544 Accuracy 0.3395
Epoch 18 Batch 100 Loss 0.5637 Accuracy 0.3435
Epoch 18 Batch 150 Loss 0.5625 Accuracy 0.3421
Epoch 18 Batch 200 Loss 0.5686 Accuracy 0.3421
Epoch 18 Batch 250 Loss 0.5714 Accuracy 0.3413
Epoch 18 Batch 300 Loss 0.5727 Accuracy 0.3407
Epoch 18 Batch 350 Loss 0.5770 Accuracy 0.3406
Epoch 18 Batch 400 Loss 0.5759 Accuracy 0.3394
Epoch 18 Batch 450 Loss 0.5779 Accuracy 0.3390
Epoch 18 Batch 500 Loss 0.5810 Accuracy 0.3392
Epoch 18 Batch 550 Loss 0.5836 Accuracy 0.3388
Epoch 18 Batch 600 Loss 0.5870 Accuracy 0.3379
Epoch 18 Batch 650 Loss 0.5905 Accuracy 0.3378
Epoch 18 Batch 700 Loss 0.5945 Accuracy 0.3376
Epoch 18 Loss 0.5947 Accuracy 0.3376
Time taken for 1 epoch: 298.2541983127594 secs

Epoch 19 Batch 0 Loss 0.5082 Accuracy 0.3261
Epoch 19 Batch 50 Loss 0.5285 Accuracy 0.3451
Epoch 19 Batch 100 Loss 0.5336 Accuracy 0.3472
Epoch 19 Batch 150 Loss 0.5322 Accuracy 0.3440
Epoch 19 Batch 200 Loss 0.5355 Accuracy 0.3439
Epoch 19 Batch 250 Loss 0.5413 Accuracy 0.3441
Epoch 19 Batch 300 Loss 0.5461 Accuracy 0.3443
Epoch 19 Batch 350 Loss 0.5519 Accuracy 0.3441
Epoch 19 Batch 400 Loss 0.5548 Accuracy 0.3436
Epoch 19 Batch 450 Loss 0.5561 Accuracy 0.3427
Epoch 19 Batch 500 Loss 0.5595 Accuracy 0.3423
Epoch 19 Batch 550 Loss 0.5616 Accuracy 0.3416
Epoch 19 Batch 600 Loss 0.5658 Accuracy 0.3412
Epoch 19 Batch 650 Loss 0.5684 Accuracy 0.3407
Epoch 19 Batch 700 Loss 0.5707 Accuracy 0.3405
Epoch 19 Loss 0.5709 Accuracy 0.3406
Time taken for 1 epoch: 297.59109830856323 secs

Epoch 20 Batch 0 Loss 0.6551 Accuracy 0.3720
Epoch 20 Batch 50 Loss 0.5086 Accuracy 0.3527
Epoch 20 Batch 100 Loss 0.5160 Accuracy 0.3495
Epoch 20 Batch 150 Loss 0.5196 Accuracy 0.3495
Epoch 20 Batch 200 Loss 0.5210 Accuracy 0.3490
Epoch 20 Batch 250 Loss 0.5241 Accuracy 0.3487
Epoch 20 Batch 300 Loss 0.5287 Accuracy 0.3486
Epoch 20 Batch 350 Loss 0.5312 Accuracy 0.3477
Epoch 20 Batch 400 Loss 0.5337 Accuracy 0.3475
Epoch 20 Batch 450 Loss 0.5369 Accuracy 0.3469
Epoch 20 Batch 500 Loss 0.5377 Accuracy 0.3458
Epoch 20 Batch 550 Loss 0.5400 Accuracy 0.3453
Epoch 20 Batch 600 Loss 0.5441 Accuracy 0.3450
Epoch 20 Batch 650 Loss 0.5469 Accuracy 0.3445
Epoch 20 Batch 700 Loss 0.5507 Accuracy 0.3440
Saving checkpoint for epoch 20 at ./checkpoints/train/ckpt-4
Epoch 20 Loss 0.5507 Accuracy 0.3440
Time taken for 1 epoch: 303.6011939048767 secs

9.6 评估

评估过程包含以下步骤:

  • 使用Portuguese tokenizer对输入语句进行编码
  • 解码输入start token == tokenizer_en.vocab_size
  • 计算padding_masklook_ahead_mask
  • decoder输出预测结果
  • 选择最后一个词,并且计算它的argmax
  • 将之前输出的词拼接起来,作为deocder的输入,用于预测后面的词
  • 最后的到最终的预测结果

这个评估过程非常重要,实际上这也是模型训练好以后,我们使用模型进行翻译的过程。我们可以看到这个过程是一步一步进行的,专业术语叫做Auto-Regression。虽然transformer的训练很快,但是推理却很慢,主要原因就是它做的是Auto-regression,不能进行并行化推理,所以后续很多对transformer的改进工作都是在这上面做的改进,我会在后续的博客中详细介绍相关模型。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
def evaluate(inp_sentence):
start_token = [tokenizer_pt.vocab_size]
end_token = [tokenizer_pt.vocab_size + 1]

# inp sentence is portuguese, hence adding the start and end token
inp_sentence = start_token + tokenizer_pt.encode(inp_sentence) + end_token
encoder_input = tf.expand_dims(inp_sentence, 0)

# as the target is english, the first word to the transformer should be the
# english start token.
decoder_input = [tokenizer_en.vocab_size]
output = tf.expand_dims(decoder_input, 0)

for i in range(MAX_LENGTH):
enc_padding_mask, combined_mask, dec_padding_mask = create_masks(
encoder_input, output)

# predictions.shape == (batch_size, seq_len, vocab_size)
predictions, attention_weights = transformer(encoder_input,
output,
False,
enc_padding_mask,
combined_mask,
dec_padding_mask)

# select the last word from the seq_len dimension
predictions = predictions[: ,-1:, :] # (batch_size, 1, vocab_size)

predicted_id = tf.cast(tf.argmax(predictions, axis=-1), tf.int32)

# return the result if the predicted_id is equal to the end token
if predicted_id == tokenizer_en.vocab_size+1:
return tf.squeeze(output, axis=0), attention_weights

# concatentate the predicted_id to the output which is given to the decoder
# as its input.
output = tf.concat([output, predicted_id], axis=-1)

return tf.squeeze(output, axis=0), attention_weights
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
def plot_attention_weights(attention, sentence, result, layer):
fig = plt.figure(figsize=(16, 8))

sentence = tokenizer_pt.encode(sentence)

attention = tf.squeeze(attention[layer], axis=0)

for head in range(attention.shape[0]):
ax = fig.add_subplot(2, 4, head+1)

# plot the attention weights
ax.matshow(attention[head][:-1, :], cmap='viridis')

fontdict = {'fontsize': 10}

ax.set_xticks(range(len(sentence)+2))
ax.set_yticks(range(len(result)))

ax.set_ylim(len(result)-1.5, -0.5)

ax.set_xticklabels(
['<start>']+[tokenizer_pt.decode([i]) for i in sentence]+['<end>'],
fontdict=fontdict, rotation=90)

ax.set_yticklabels([tokenizer_en.decode([i]) for i in result
if i < tokenizer_en.vocab_size],
fontdict=fontdict)

ax.set_xlabel('Head {}'.format(head+1))

plt.tight_layout()
plt.show()
1
2
3
4
5
6
7
8
9
10
11
def translate(sentence, plot=''):
result, attention_weights = evaluate(sentence)

predicted_sentence = tokenizer_en.decode([i for i in result
if i < tokenizer_en.vocab_size])

print('Input: {}'.format(sentence))
print('Predicted translation: {}'.format(predicted_sentence))

if plot:
plot_attention_weights(attention_weights, sentence, result, plot)

translate(“este é um problema que temos que resolver.”)
print (“Real translation: this is a problem we have to solve .”)

png

10. 参考资料

Transformer model for language understanding

 评论